Personalized Medicine and Imaging Monitoring Reversal of MET-Mediated Resistance to EGFR Tyrosine Kinase Inhibitors in Non–Small Cell Lung Cancer Using 30-Deoxy-30-[18F]-Fluorothymidine Positron Emission Tomography

نویسندگان

  • Francesca Iommelli
  • Viviana De Rosa
  • Sara Gargiulo
  • Mariarosaria Panico
  • Marcello Monti
  • Matteo Gramanzini
  • Giovanni Ortosecco
  • Rosa Fonti
  • Arturo Brunetti
  • Silvana Del Vecchio
چکیده

Purpose: MET amplification is one of the mechanisms underlying acquired resistance to EGFR tyrosine kinase inhibitors (TKI) in non–small cell lung cancer (NSCLC). Here, we tested whether 30-deoxy-30-[18F]-fluorothymidine ([F]FLT) positron emission tomography/computerized tomography (PET/CT) can detect MET-mediated resistance to EGFR TKIs and monitor the effects of MET inhibitors in NSCLC. Experimental Design: H1993 and H820 NSCLC cells with high and low levels of MET amplification, respectively, and HCC827-expressing MET, but without gene amplification, were tested for the effects of MET inhibitors on the EGFR pathway and proliferation both in vitro and in vivo. Nudemice bearingNSCLCs with and without MET amplification were subjected to [F]FLT PET/CT before and after treatment with crizotinib or erlotinib (50 mg/kg and 100 mg/kg p.o. for 3 days). Results: H1993 cells showed high responsiveness to MET inhibitors and were resistant to erlotinib. Conversely, HCC827 cells showed high sensitivity to erlotinib and were resistant to MET inhibitors. Accordingly,H1993 tumors bearingMET amplification showed amean reduction in [F]FLTuptake of 28% and 41% after lowand high-dose treatment with crizotinib for 3 days, whereas no posttherapy changes of [F]FLT uptake were observed in HCC827 tumors lackingMET amplification. Furthermore, a persistently high [F]FLT uptake was observed in H1993 tumors after treatment with erlotinib, whereas HCC827 tumors showed up to 39% reduction of [F]FLT uptake following erlotinib treatment. Imaging findings were confirmed by Ki67 immunostaining of tumor sections. Conclusions: [F]FLT PET/CT can detect MET-mediated resistance to EGFR TKIs and its reversal byMET inhibitors in NSCLC. Clin Cancer Res; 20(18); 4806–15. 2014 AACR.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Imaging Cellular Proliferation in Prostate Cancer with Positron Emission Tomography

Prostate cancer remains a major public health problem worldwide. Imaging plays an important role in the assessment of disease at all its clinical phases, including staging, restaging after definitive therapy, evaluation of therapy response, and prognostication. Positron emission tomography with a number of biologically targeted radiotracers has been demonstrated to have potential diagnostic and...

متن کامل

Early 18F-FDG uptake as a reliable imaging biomarker of T790M-mediated resistance but not MET amplification in non-small cell lung cancer treated with EGFR tyrosine kinase inhibitors

BACKGROUND The two main mechanisms of resistance to EGFR tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer (NSCLC) are the occurrence of T790M secondary mutation in the kinase domain of EGFR and MET amplification. The aim of the present study was to test whether early changes of 18F-fluorodeoxyglucose (18F-FDG) uptake in animal models bearing erlotinib-resistant NSCLC may have dif...

متن کامل

Analysis and reproducibility of 3'-Deoxy-3'-[18F]fluorothymidine positron emission tomography imaging in patients with non-small cell lung cancer.

PURPOSE Imaging tumor proliferation with 3'-deoxy-3'-[(18)F]fluorothymidine (FLT) and positron emission tomography is being developed with the goal of monitoring antineoplastic therapy. This study assessed the methods to measure FLT retention in patients with non-small cell lung cancer (NSCLC) to measure the reproducibility of this approach. EXPERIMENTAL DESIGN Nine patients with NSCLC who we...

متن کامل

Early Detection of Erlotinib Treatment Response in NSCLC by 3′-Deoxy-3′-[18F]-Fluoro-L-Thymidine ([18F]FLT) Positron Emission Tomography (PET)

BACKGROUND Inhibition of the epidermal growth factor receptor (EGFR) has shown clinical success in patients with advanced non-small cell lung cancer (NSCLC). Somatic mutations of EGFR were found in lung adenocarcinoma that lead to exquisite dependency on EGFR signaling; thus patients with EGFR-mutant tumors are at high chance of response to EGFR inhibitors. However, imaging approaches affording...

متن کامل

An Assessment of Early Response to Targeted Therapy via Molecular Imaging: A Pilot Study of 3′-deoxy-3′[(18)F]-Fluorothymidine Positron Emission Tomography 18F-FLT PET/CT in Prostate Adenocarcinoma

Fluorothymidine is a thymidine analog labeled with fluorine-18 fluorothymidine for positron emission tomography (18F-FLT-PET) imaging. Thymidine is a nucleic acid that is used to build DNA. Fluorine-18 fluorothymidine (18F-FLT) utilizes the same metabolic pathway as does thymidine but has a very low incidence of being incorporated into the DNA (<1%). 18F-FLT-PET could have a role in the evaluat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014